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Abstract: We examine the one-dimensional transient diffusion equation with a space-dependent 

diffusion coefficient. Such equations can be derived from the Fokker–Planck equation and are es-

sential for understanding the diffusion mechanisms, e.g., in carbon nanotubes. First, we construct 

new, nontrivial analytical solutions with the classical self-similar Ansatz in one space dimension. 

Then we apply 14 different explicit numerical time integration methods, most of which are recently 

introduced unconditionally stable schemes, to reproduce the analytical solution. The test results 

show that the best algorithms, especially the leapfrog-hopscotch, are very efficient and severely out-

perform the conventional Runge–Kutta methods. Our results may attract attention in the commu-

nity who develops multi-physics engineering software. 

Keywords: diffusion; heat conduction; analytical solution; explicit time-integration; uncondition-

ally stable numerical methods 
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1. Introduction 

Pure diffusion or pure heat conduction in solids is one of the simplest transport pro-

cesses that we can imagine being described with a single linear partial differential equa-

tion (PDE) of space and time. Diffusion means particle transport, and heat conduction 

means energy transport. Although diffusion processes can be studied in different coordi-

nate systems with different dimensions, here we consider only one Cartesian coordinate, 

therefore the simplest regular diffusion PDE reads 
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( ) ( )2

2

, ,u x t u x t
D

t x

 
=

 
, (1) 

where x, t , ( )u u x,t=  is the distribution of the particle concentration (temperature 

in case of heat conduction) in space and time, and D  is the constant diffusion coefficient. 

The concentration ( )u u x,t=  in the equation above is considered up to a constant; conse-

quently, it may also refer to the concentration with respect to the average. 

For the case of spatially homogeneous systems, plenty of known analytical solutions 

exist. These simple systems are often considered for the development and testing of new 

numerical methods by mathematicians. However, in many practical problems, the prop-

erties of the materials, such as the diffusivity, the heat conductivity, the specific heat, and 

the density, can widely vary in the system [1] (p. 15) due to natural or artificial inhomo-

geneities, thus we believe that new results for these systems are valuable. The general 

space-dependent diffusion equation, which is also called the Fick–Jacobs equation [2] (p. 

68), can be derived from the Fokker–Planck equation, as was shown by Zwanzig [3] or 

Reguera and Rubi [4]. Such equations are used to describe the single-particle diffusion 

processes in systems with structural inhomogeneities such as narrow ribbon channels [5]. 

These kinds of systems emerge when molecules move through carbon nanotubes [6], sys-

tems of channels, e.g., in zeolites [7], or in the membrane of cells [8]. 

To introduce and investigate irregular diffusion phenomena, we define the PDE (1) 

with a non-constant diffusion coefficient. We consider that the diffusion coefficient has 

the most common power law space dependence ( ) mD x Dx= , therefore the diffusion 

equation has the form of 

( ) ( ) ( ) ( )2
1

2

, , , ,m m mu x t u x t u x t u x t
D x D mx x

t x x x x

−
     

= = +           

, (2) 

where D  is always a constant that fixes the correct physical dimension for any given 

value of m. 

In one of our last studies [9] we investigated—after an exhausting historical over-

view—the regular diffusion equation of Equation (1) with the self-similar, traveling wave, 

traveling profile, or from some generalized self-similar trial functions. We found some 

new analytical solutions for the regular diffusion equation that go far beyond the well-

known Gaussian (and error-type) solutions and can be expressed with the multiplication 

of Gaussian and Kummer or Whittaker functions with different parameters. These sophis-

ticated functions can describe irregular solutions, which have a different rate of decay than 

the Gaussian fundamental solution. Additionally, we found solutions that show some os-

cillatory behavior and a quick decay at large spatial and temporal coordinates. Among the 

numerous presented functions, some of them describe physically relevant solutions that 

have power-law decay at infinite time and space coordinates. In this paper, we investigate 

the diffusion equation that has space dependent diffusion coefficients, solve it with the 

classical self-similar Ansatz, and present the possible solutions, which contain the Whit-

taker functions. We will show that there is an exponential factor in the Whittaker functions 

that causes a quicker decay than the Kummer functions (see Equation (4)). Such kinds of 

solutions are still unknown in the scientific literature. 

There is a detailed study by Bluman and Cole [10] describing numerous analytical 

solutions to the diffusion equation, but our results are completely new and different from 

those of Bluman and Cole. The natural generalizations of diffusion equations are the reac-

tion (or) advection–diffusion equations. Such systems may have spatially variable velocity 

or diffusion coefficients as well. Zoppou and Knight obtained analytical solutions for this 

case [11]. However, their solutions are different from ours as they use a Gaussian-type 

trial function and not the general self-similar Ansatz. To find an analogy, we note that for 

the incompressible multi-dimensional Navier–Stokes equation the analytic results derived 
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from the self-similar Ansatz are the Kummer functions [12]. For the compressible case, 

however, the Whittaker function was obtained [12]. In this sense, we have to emphasize 

that for processes where the diffusion coefficient has spatial dependence, the resulting 

functions are qualitatively different from the time dependent case (for this latter case, see 

[13]). 

There are a large number of numerical methods to solve the diffusion or heat con-

duction equation. The most widely known ones belong to the family of the finite difference 

schemes (FDM) [14,15] or the finite element methods (FEM) [16], but these two can be 

combined as well [17]. All of these methods have not only advantages but disadvantages 

as well. The non-uniformity of physical properties implies that the coefficients in the equa-

tions and thus the eigenvalues of the system matrix may have a range of several orders of 

magnitude, therefore the problem can be highly stiff. In this case, the so-called Courant–

Friedrichs–Lewy (CFL) limit is very small, which means that conventional explicit meth-

ods (such as Runge–Kutta or Adams–Bashforth types) are unstable when the time step 

size is larger than this small threshold. We will demonstrate this effect for the Runge–

Kutta schemes in the current paper. 

Implicit methods have much better stability properties and they are considered to be 

superior by many scholars, thus they are most often used to solve this and similar equa-

tions [18–27]. However, they require the solution of a system of algebraic equations at each 

time step, whose parallelization is not straightforward. The calculations can be very slow 

with extensive memory usage, especially if the matrix is huge and not tridiagonal, which 

is frequent in more than one space dimension. As the formerly rapid increase of the CPU 

clock frequencies has almost halted in recent decades, and the trend towards increasing 

parallelism in high performance computing is massive [28,29], we believe that easily par-

allelizable explicit methods have a growing comparative advantage on the long run. 

Therefore, even if explicit and unconditionally stable algorithms are currently not 

very popular (see [30–37] for counterexamples), we invested our time and energy into the 

development of new, more effective ones, which work in an arbitrary number of space 

dimensions. We have to emphasize that this is a nontrivial task. For example, Ndou et al. 

very recently managed to significantly improve one of the most common explicit and sta-

ble methods, the UPFD algorithm [38], but the price was that their method lost its simple 

and explicit nature, as they applied a kind of proper orthogonal decomposition (POD). 

Contrary to them, our algorithms are always fully explicit. 

In our original papers [13,39–46], we examined our new methods theoretically and 

tested them using simple analytical solutions as well as numerical reference solutions. We 

demonstrated that they are able to serve with fairly accurate results much faster than the 

widely used MATLAB ‘ode’ solvers. In the current paper, we use the constructed nontriv-

ial analytical solution to perform tests by varying some parameters of the problem to ex-

amine how the individual methods perform and which of them can be proposed under 

different circumstances. 

The rest of the paper is structured as follows. In Section 2, we analytically solve the 

studied equation and plot the results. In Section 3, we describe the discretization methods 

and the used numerical schemes. The results of the numerical calculations are presented 

in Section 4, first for an equidistant, then for non-equidistant meshes. Finally, we summa-

rize our conclusions in Section 5, then write briefly about our future research directions. 

2. Analytical Solution 

To solve the PDE (2), we use the well-known reduction technique, where we define 

a new variable 
x

t
 =  , which is a combination of the spatial and temporal variable. 

Then we try to find the solution ( )u x, t  with the self-similar Ansatz in the form of 

( ) ( )t f x / tu x, t  −= , where α and β are arbitrary real constants, and ( )f   is the shape 



Mathematics 2022, 10, 2813 4 of 28 
 

 

function with existing first and second continuous derivatives with respect to η. Substi-

tuting the first and second derivative of the Ansatz into the original Equation (2), we arrive 

to an ordinary differential equation (ODE) for ( )f   

1 0
2

m mD f f Dm f
m


  − 

 − + − − = 
− 

,  

if and only if the following constraints are fulfilled for the exponents: α = arbitrary real 

number, 
1

2 m
 =

−
, where m is an arbitrary real parameter of the space dependent diffu-

sion coefficient in Equation (2). According to Maple 12 this ODE has the solution 

( ) ( )
( )( )

( )
( )

( )
( )( )

( )
( )

2

2

2

2

2

2

2
2 21

1 2 4 2 31
,
2 42 2

2
2 22

1 2 4 2 31
,
2 42 2

2
e

2

2
e ,

2

m

m

m
D m

m m m

mm

m
D m

m m m

mm

mc
f M

m D

mc
W

m D


















− +

− +

− − +
−

+ − − −

−−

− − +
−

+ − − −

−−

 −
 =  +
 − 

 −
 
 − 

 (3) 

where M  and W  are the Whittaker functions [12,47]. To see the connection to the for-

mer results, we note the formulas for expressing the Whittaker functions [12] in terms of 

the Kummer functions M and U as 

( )
1

2 2
,

1
e ,1 2 ;

2

z

M z z M z


    
− +  

= − + + 
 

 

( )
1

2 2
,

1
e ,1 2 ;

2

z

W z z U z


    
− +  

= − + + 
 

. 

(4) 

It can be seen from the exponential factor that the Whittaker functions have a quicker 

decay than the Kummer functions, as we noted in the Introduction. Figure 1 shows the 

shape functions for various parameters, and Figure 2 exemplifies the time development 

of the concentration function u for a given parameter set. 
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Figure 1. Shape functions of Equation (3) in the case of generalized space-dependent diffusion coef-

ficients for various values of α with different m exponents of the diffusion parameter: (A) 2 = − , 

(B) 1 = − , (C) 1
2

 = , (D) 1 = , (E) 3
2

 = , (F) 5
2

 = . The real part of the solutions is 

presented for 1D = , 1 0c = , 2 1c = . The black, red, blue, green, brown, grey, and yellow lines are 

for 3 51 11, , 0, ,1,  , and 
2 2 2 2

m = − − , respectively. 

   

   
 

A) B) C) 

D) E) F) 
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Figure 2. The solution of Equation (2). The presented u(x, t) function with the shape function of 

Equation (3) is for the α = 1, c1 = 0, c2 = 1, 2D =  and m = 1/3 parameter set. One can see that the 

solution decays more quickly in time than in space. 

3. The Procedure of the Numerical Solution 

3.1. The Equation and Its Discretization in the Non-Uniform Case 

If the properties of the material depend on space, we can use the following equation: 

( ) ( ) ( )
u u

c x x k x
t x x


   

=  
   

, (5) 

where, in the case of heat conduction, c, ρ, and k are the specific heat, density, and heat 

conductivity, respectively, and / ( )D k c=  is the thermal diffusivity. If one differenti-

ates the term ( )
u

k x
x




 with respect to x on the right side of (5) considering k as a contin-

uous function, then one obtains a similar equation to (2), where an extra drift term with 

the first spatial derivative of u appears. To avoid this, we follow another strategy, and 

discretize the function k, and at the same time the space derivatives in Equation (5) by the 

standard central difference formula to obtain 

( ) ( ) ( ) ( )1
( ) ( ) .   

2 2
i

i i i i
i i i i

x

u x x u x u x x u xu x x
c x x k x k x

t x x x

 + − − −     
= + + −    

       
  

 

 

At this point, we switch from node to cell variables. This means that iu , ic , and i  

are the approximation of the average temperature, specific heat, and density of cell i, by 

their value at the cell center. Furthermore, 
i,i+1k  is the heat conductivity between cell i 
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and its (right) neighbor, estimated by its value at the border of the cells. Now the previous 

formula will have the form 

1 -1
, 1 1,

1 i ii i i
i i i i

i i

u u u udu
k k

dt c x x x
+

+ −

− − 
= + 

   
.  

For a non-equidistant grid, let us denote the length of the cell by ix . The distance 

between the cell-center of the two neighboring cells as ( ), 1 1 / 2ii i id x x+ +=  +  . Using 

these, the equation above can be generalized as follows: 

, 1 , 1

1 1i
, 1 , 1

1

i i i i i

i ii i
i i i i

i i

du u u u u
k k

dt c x d d + −

+ −
+ −

 − −
= + 

   
.  

Because we are in one spatial dimension, we consider the cross-section area of the 

system as unity. Using these quantities, the volume and the heat capacity of the cell can 

be expressed as i iV x=  , and i i i iC c x=  , respectively, and the thermal resistance be-

tween these cells is approximated as /ij ij ijR d k . Now we have the equation for the time 

derivative of each cell-variable: 

1, 1,

1 1i ii i i

i i i i i i

u u u udu

dt R C R C− +

− +− −
= + ,  

which can be written into a matrix form 

du
Mu

dt
= , (6) 

where the system matrix M is N N  dimensional. One can find more details about this 

kind of discretization (for the case of more space dimensions as well) in Chapter 5 of the 

book [48] and in our previous paper [42]. 

We implement the power-law space dependence mD Dx=  of the diffusion coeffi-

cient only at the level of the k coefficients, so take 1c   and 1   for simplicity. Let us 

consider the 1D interval 
0 Nx x , x   , 0NL x x= − , and we construct a non-equidistant 

spatial grid using the following procedure. We start with the definition of the coordinates 

0 1 Nx , x , ..., x  of the cell borders: 

( )1 1 0 1 1j j j j jx x x , C x x j , j ,...,N− −= +  =  =  +  = .  

where 0x , 0x , and γ will be given in the concrete example. If γ is positive or negative, 

then the cell sizes are increasing or decreasing from left to right, respectively. If γ is zero, 

then the grid is equidistant and L N x=  . Now the cell centers 1 NX , ..., X  can be given 

as follows: 

1 1
2

j

j j

x
X x , j ,...,N−


= + = .  

The resistances are calculated as follows: 

( )

1 1
, 1

, 1

, 1,..., 1i i i i
i i m

i i i

X X X X
R i N

k D x

+ +
+

+

− −
= = = − .  

Therefore, the concentrations, e.g., the Dirichlet boundary conditions, are calculated 

at the 1 NX , ..., X  cell centers, and the conductivities are calculated at the 1 1Nx , ..., x −  

cell borders. The time variable is always discretized uniformly, so if 0 fint t , t 
 

, then 
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0 fin 01jt t jh , j ,...,T , hT t t= + = = − .  

3.2. The Applied 14 Numerical Algorithms 

Here we briefly present necessary information about the used schemes in one space 

dimension and give the source of the publications where the interested reader can find 

more details. First, the formula for the simplest case (equidistant mesh and uniform ma-

terial properties, Equation (1)) is presented, then it is immediately generalized for a non-

uniform mesh (Equation (6)). The purpose of the first, simplest form is to make compari-

son easier, as in most mathematical textbooks and papers numerical algorithms are pre-

sented in this form. The second, more general forms are essential because, during our pre-

sent work, we use only them. 

For the case of the general one-dimensional mesh, let us introduce two notations: 

1 1

, 1 , 1 , 1 , 1

1 1
+  and + , 1, ...,i i

i i

i ii i i i i i i i

u uh h
r A i N

C R R C R R

− +

− + − +

   
= = =   

   
   

.  (7) 

The first quantity is the generalization of the usual mesh-ratio 
2

Dh
r

x
=


 valid for 

Equation (1) if it is discretized using a uniform mesh. The second quantity reflects the state 

and the effect of the neighbors of cell i. 

1. The first invented among our methods is the constant neighbor (CNe) algorithm 

[45,49]. For a uniform mesh, the following formula must be applied for each node: 

( )2 21 1 1 1
2

n n
n n i i
i i

r ru u
u u e e− −+ − ++

=  + − , (8) 

whereas for non-uniform mesh, the new values of the cell variables are: 

( )i i1 1in n
i i

i

r rA
u u e e

r

− −+ =  + − . (9) 

2. The CpC algorithm [43] is the organization of the CNe scheme into a two-stage 

method, in which the first stage is a fractional time step with length ph. Here we use only

1
2

p = , because typically this yields better accuracy than the other values of p. At the 

first stage, new predictor values of u are calculated with the CNe formula using a 

1 2h h /=  time step size: 

( )pred 1 1 1
2

n n
n i i
ii

r ru u
u u e e− −− ++

=  + −  and ( )/2 /2pred
1i ir rn i

ii
i

A
u u e e

r

− −
= + − .   

Using these results, new values of the Ai quantities are calculated 

1new
pred pred

1 1

, 1 , 1

+i
i i

i i i i i

h u u
A

C R R

− +

− +

 
 =
 
 

, (10) 

and then, at the second stage, these are used during the full-time step size corrector step. 

It means that, at the end of the time step, the final values are 

( )2 2

pred pred
1 1 1 1

2

n n i i
i i

r ru u
u u e e− −+ − ++

=  + −  and ( )
new

i1 1i in n
i i

i

r rA
u u e e

r

− −+ =  + − .   

3. The 2-stage linear-neighbor (LNe or LNe2) method [45] starts with using the CNe 

method as a predictor to calculate new pred
iu  values, which are valid at the end of the 
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current time step. Using them we can introduce a quantity, which is proportional to the 

aggregated slopes of the neighbors 

pred pred
1 11 1i

n n
i ii is u u u u− +− += + − − ,   

and then, for the uniform mesh, the corrector values of the two-stage LNe method are 

( )
2

2 21 1 1 1
1 1

2 2 2

i
n n

n n i i
i i

r
r ru u s e

u e e
r

u
−

− −+ − +
 + −

+ − + −  
 

= . (11) 

In the case of a non-uniform mesh, we need to calculate new new
iA  values similarly 

to Formula (10), but with full h time step size h instead of 1h . Using these the corrector step 

is as follows: 

new new
1 1 i

i iin n i i
i i i

i i i

r
r A A A Ae

u e A
r r r

u
−

−+  − −−
+ − +  
 

= . (12) 

4. Based on the corrector values in Equations (11) or (12), one can repeat (11) or (12)—

first by recalculating is  and 
new
iA  again—to obtain new corrector results. This proce-

dure gives a three stage-scheme altogether, which is called the LNe3 method [45]. This 

algorithm is still second order, but more accurate than the LNe2. 

5. The CLL method [46] is very similar to the LNe3 method. The difference is that, 

due to fractional time steps at the first and second stages, it achieves third order temporal 

convergence, but only if the second fractional time step is 
2 2 3h h /= . Generally, the length 

of the first fractional step is ph, 2 2
3

p  , but here we take 2
3

p =  to achieve the best 

accuracy and to spare CPU time by avoiding the extra calculation of the exponential fac-

tors ipr
e
− . Therefore, in the first stage, we calculate new predictor values of the variables 

with the CNe formula, but with a 
1 2 3h h /=  time step: 

( )C 1 14 /3 4 /31
2

n n
n i i

i i
r ru u

u u e e− +− −+
=  + −  and ( )2 /3 2 /3C 1i ir rn i

i i
i

A
u u e e

r

− −
= + − .    

In the second stage, we use formulas similar to (11) and (12), but with an 
2 2 3h h /=  

time step size to obtain the first corrector values. For the uniform mesh, we have 

( )
1

1 1 1
4 /3

4 /3 4 /3 1
1 1

2 2 4 / 3

i
n n

n n i i
i i

r
r ru u s e

u e e
r

u+ − +
−

− −
 + −

+ − +  − 
 
 

= , (13) 

where 
1 C

1 1 1 1i
C n n
i i i is u u u u− + − += + − − . For a non-uniform mesh, we need to calculate new new

iA  

values similarly to Formula (10), i.e., 1
C C

1 1

, 1 , 1

+C
i

i i

i i i i i

u uh
A

C R R

− +

− +

 
=  

 
 

. Using these, the corrector 

step is as follows: 

C C2 /3
2 /31 i 1

2 / 3

i

i

r
r i in n i

i i i
i i i

A A A Ae
u e A

r r r
u

−
−+

 − −−
+ − + 
 
 

= . (14) 

In the third stage, a full time step is taken. For the uniform mesh, we have 

( )
2

1 1 1
2

2 2 3 1
1 1

2 4 2

i
n n

n n i i
i i

r
r ru u s e

u e e
r

u+ − +
−

− −
 + −

+ − + − 
 
 

= , (15) 

where 
2 CL

1 1 1 1i
CL n n
i i i is u u u u− + − += + − − . In the more general case, we have 
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CL CL
1 i 1

2 / 3 2 / 3

i

i

r
r i in n i

i i i
i i i

A A A Ae
u e A

r r r
u

−
−+

 − −−
+ − + 
 
 

= , (16) 

where 

CL 2
CL CL

1 1

, 1 , 1

+i
i i

i i i i i

u uh
A

C R R

− +

− +

 
=  

 
  . 

Now we turn our attention to the odd–even hopscotch methods. To apply any ver-

sion of them, one needs a bipartite spatial grid, in which all the nearest neighbors of the 

odd nodes or cells are even and vice versa. The spatial and temporal structure (similar to 

the stencil) of the examined schemes are presented in Figure 3, where the time flows from 

the top to the bottom of the figure. In the case of each method, only one odd and one even 

cell is present in the figure, and the stages are symbolized by colorful boxes. The repeating 

blocks are indicated by the dashed green line. For example, the leapfrog-hopscotch struc-

ture (a) consists of two half and many full time steps. First, a half-sized time step (symbol-

ized by a blue box with the number ‘0′ inside in Figure 3a) is taken for the odd cells using 

the initial values, then full-time steps are taken strictly alternately for the even and odd 

cells until the end of the last timestep (pink box), which should be halved for odd cells to 

reach exactly the same final time as the even nodes do. The main point is that when a new 

value of ui is calculated, always the latest values of the neighbors 1iu   must be used, 

which ensures stability and quite fast convergence at the same time. 

 

Figure 3. Space-time structure of the hopscotch-type methods. (a) Leapfrog-hopscotch (LH), (b) 

original odd-even hopscotch (OOEH), (c) shifted-hopscotch (SH), (d) asymmetric hopscotch (ASH). 

6. The leapfrog-hopscotch-CNe (LH-CNe) method [13] is obtained if we apply the 

CNe formula in each stage of the LH structure (Figure 3a) with the appropriate time step 

size. For example, the first stage (which has half-length on the time axis) reads as follows: 

( )
1

2

0 0
0 1 1 1

2

i i
ii

r ru u
u u e e− −− ++

=  + −  and ( )
01

/2 /22 0 1ii i
ii

i

r rA
u u e e

r

− −
=  + −    

whereas the middle stages apply the following formula: 

( )2 2
latest latest

1 1 1 1
2

n n i i
i i

r ru u
u u e e− −+ − ++

=  + −  and ( )
latest

1 1ii in n
i i

i

r rA
u u e e

r

− −+ =  + −  for a 

uniform and a non-uniform mesh, respectively, where the latest values of the neighbors 

are used to calculate 
latest
iA  by Formula (10). For the sake of programming simplicity, the 

total number of cells N of the 1D grid are always odd in our numerical experiments, thus 

at the first stage, the above formula has been applied for the 3 5 7 2i , , , N= −  cells, and 
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then the boundary conditions have been calculated for the middle of the time intervals for 

the first and last cell as well. 

7. The next method is the leapfrog-hopscotch (LH) method. It uses the so called   

formula. In our case, this has the form for a uniform mesh: 

( ) ( )
( )

latest latest
1 11

1 2

1 2 1

n
i i in

i

r u r u u
u

r





− ++
− + +

=
+ −

, (17) 

and (in the general case), 

( )

( )

latest1

1 1

i i

i

n
in

i

r u A
u

r





− +
=

+ −
. (18) 

In the paper [13] where it was published, several numerical experiments were conducted, 

and since then we have been using the formula, which was proven to be the most accurate 

(labelled with L2 in [13]). It means that 0 =  is applied at the first stage and 1
2

 =  in all 

other stages. 

8. In the case of the original odd-even hopscotch algorithm [50], abbreviated by 

OOEH here, the usual FTCS (explicit Euler) formula was used at the first stage and the 

implicit Euler formula in the second stage in the structure shown in Figure 3b. The formu-

las for the uniform and non-uniform mesh are the following: 

FTCS: ( ) ( )1
1 11 2n n n n

i i i iu r u r u u+
− += − + +  and ( )1 1 i i

n n
i iu r u A+ = − + . 

Implicit Euler: 
( )1 1

1 11

1 2

n n n
i i in

i

u r u u
u

r

+ +
− ++

+ +
=

+
 and 

latest
1

1

i

i

n
n i
i

u A
u

r

+ +
=

+
. 

As we showed before [40], this is a powerful explicit method for spatially uniform 

cases, but if the stiffness ratio is large, its error can be very large [41]. 

9. The reversed (odd-even) hopscotch method (RH) applies the same structure and 

the same formulas as the OOEH method, but the formulas are in the opposite order. How-

ever, when first-stage calculations start, the new values of the neighbors are not known. 

Therefore, the implicit formula can be applied only with a trick, which is to handle the 

neighbors not implicitly, but explicitly. This idea yields the following first-stage formulas: 

( )1 11

1 2

n n n
i i in

i

u r u u
u

r

− ++
+ +

=
+

 and 1

1 2

i

i

n
n i
i

u A
u

r

+ +
=

+
. (19) 

If one has the code of the original OOEH, then it is easy to obtain the code of the RH 

algorithm, as one needs to interchange the formulas of the first and second stages only. 

We demonstrated [41] that this RH algorithm has much smaller errors in the case of ex-

tremely stiff systems than the OOEH method. 

10. The shifted-hopscotch (SH) algorithm [42] consists of five stages (two half and 

three full-time steps). As shown in Figure 3c, these altogether span two full time steps for 

odd and even cells, as well. In this paper, we use the theta Formulas (17) and (18) with the 

theta values that are proven to be the best (S4 algorithm in [42]). It means 0 =  is ap-

plied at the first, 1
2

 =  in the second, third, and fourth, and 1 =  at the fifth stage. 

11. The asymmetric-hopscotch (ASH) algorithm [51] is a reduced version of the SH 

scheme. As shown in Figure 3d, it consists of only three stages (two half and one full-time 

step), which together span one full time step for odd and even cells, as well. The set of the 

theta values that is proven to be the best (A1 algorithm in [51]) is 0 =  in the first, 

1
2

 =  in the second, and 1 =  in the third stage. 
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12. The pseudo-implicit (PI) two-stage algorithm is taken from [44] (Algorithm 5 

there) in the case of the pure diffusion equation with parameter 1 = , which means we 

take a half time step to obtain the predictor values and then a full time step for the correc-

tor values. The following formulas must be applied for each cell: 

Stage 1: 
( )1 1pred 2

1

n n n
i i i

i

ru u u
u

r

− ++ +
=

+
 and pred / 2

1 / 2

i

i

n
i

i

u A
u

r

+
=

+
. 

Stage 2: 
( ) ( )pred pred

1 11
1

1

n
i i in

i

r u r u u
u

r

− ++
− + +

=
+

 and 
( ) new

1 1 / 2

1 / 2

i

i

n
i in

i

r u A
u

r

+ − +
=

+
, 

where new

pred pred
1 1

, 1 , 1

+i
i i

i i i i i

u uh
A

C R R

− +

− +

 
 =
 
 

. One can see that the trick of the explicit treatment of the 

neighbors is the same as in the RH method. 

13. The Dufort–Frankel (DF) method [52] (p. 313) is a known but non-conventional 

explicit and unconditionally stable algorithm that has the formula for the uniform and 

non-uniform case: 

( ) ( )1
1 11

1 2 2

1 2

n n n
i i in

i

r u r u u
u

r

−
− ++

− + +
=

+
 and 

( ) 1
1 1 2

1

i i

i

n
in

i

r u A
u

r

−
+ − +

=
+

.   

As the formulas contain 1n
iu − , it is a one-stage but two-step method. It means that 

1
iu  has to be calculated from 0

iu  by another method to start the algorithm. We use the 

CNe formula for this purpose. 

14. For comparison purposes, we use that version of the fourth order Runge–Kutta 

(RK4) method, which is maybe the most common [53] (p. 737). If we apply it to our spa-

tially discretized system, we have 

( )1
1 1 2n n n

i ii ik r u u u− += + −  and 1
i i

n
i ik A ru= − , 

( )2 1 1 1
1 1 1 1/ 2 / 2 2n n n

i i ii i i ik r u k u k u k− − + += + + + − −  and ( )12 1 / 2i i
n

i i ik A r u k= − + , 

( )3 2 2 2
1 1 1 1/ 2 / 2 2n n n

i i ii i i ik r u k u k u k− − + += + + + − −  and ( )23 2 / 2i i
n

i i ik A r u k= − + , 

( )4 3 3 3
1 1 1 1 2 2n n n

i i ii i i ik r u k u k u k− − + += + + + − −  and ( )34 3 / 2i i
n

i i ik A r u k= − + ,  

 

and finally 

( )1 1 2 3 42 2 / 6n n
i i i i i iu u k k k k+ = + + + + .   

Here 1 1 1 1

, 1 , 1

/ 2 / 2
+s

i

n s n s
i i i i

i i i i i

u k u kh
A

C R R

− − + +

− +

 + +
 =
 
 

,  1 2 3s , , . 

Therefore, the CNe, CpC, LNe, LNe3, CLL, LH-CNe, LH, RH, SH, ASH, and PI meth-

ods are constructed by our research group and the verifications, analytical proofs, etc. are 

typically presented in those original papers. The methods are proven to have the following 

theoretical order of convergence in the time step size. The CNe method is first order, the 

CpC, LNe, LNe3, CLL, LH-CNe, LH, OOEH, RH, SH, ASH, PI, and DF methods are sec-

ond order, the CLL method is third order, and the RK4 scheme is fourth order in time step 

size. All algorithms, (except, of course, the RK4 method) are unconditionally stable for the 

linear diffusion equation, i.e., the above noted CFL limit is not valid for them. We empha-

size again that unconditionally stability is not the rule but the exception among explicit 

methods, for example, as it is well known, explicit Runge–Kutta methods cannot be A-

stable [54] (p. 60). 

It is worth noting that the CNe, CpC, LNe, LNe3, and LH-CNe schemes are not only 

stable but positivity preserving, which sets a limit to their error. More precisely, the new 
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1n
iu +  values are the convex combination of the old 1 1, ,n n n

i i iu u u− +  etc. values, thus the max-

imum and minimum principles [55] (p. 87) are automatically fulfilled. This directly reflects 

the second law of thermodynamics, which states that heat can spontaneously go only from 

a colder place to a warmer place, which excludes the increase of oscillations in the solu-

tions as time elapses. Thus, these methods do not yield any unphysical oscillations even 

for very large time step sizes. However, as we will see, this favorable property restricts 

the speed of the convergence of these methods, so they are often the least accurate for 

small and medium time step sizes. More concretely, they seriously underestimate the 

speed of the diffusion process (especially for larger time step sizes), which can be per-

ceived as a “negative” dissipative error. 

We also note that the hopscotch-type methods need a special bipartite grid, but in 

one space dimension this is a trivial requirement. However, these algorithms do not re-

quire to temporarily store another copy of the array for the concentration variable, so their 

memory requirements are minimal. Other methods, even the CNe, store at least one extra 

array with the same number of elements as u. 

4. Numerical Results 

4.1. Preliminaries 

To measure the accuracy, we use the usual L  error, which is the largest absolute 

difference between the exact value of the concentration analytic
iu  and num

iu  obtained by 

the studied numerical method at the final time fint : 

analytic fin num fin

1
max ( ) ( )i i

i N
Error u t u t

 
= − . (20) 

We examine this error as a function of the time step size h. For this purpose, we first 

calculate the error for a very large h, then repeat this with decreased time step sizes until 

we reach small error values. From Figure 3, one can see that the SH and the ASH structure 

are obtained by halving a time step to the odd nodes. This might be considered as a hidden 

extra advantage given to these methods. Therefore, for the sake of honesty and to make 

comparisons easier, we renormalize their time step size, i.e., we introduce the effective 

time step size, which is 

eff eff eff
4 2 for the SH  for the ASH and   for all other methods

5 3
h h , h h h h= = = .   (21) 

With this modification, the CNe, LH-CNe, LH, OOEH, RH, SH, ASH, and DF meth-

ods require only one calculation of Ai and the new u values of the cells in a given time 

step, so they have the highest speed. The CpC, LNe2, and PI need two calculations ( new
iA  

and pred
iu  must also be calculated), so their running time is roughly twice larger. The re-

quired number of calculations is three for the LNe3 and the CCL, whereas it is obviously 

four for the RK4 method, so they are approximately proportionally slower. We note that 

there are plenty of data about the running times of the recent methods in our original 

papers. 

In all numerical experiments we use the following parameters: 

1 21 1 5 199 1 0D , . , N , c , c= = = = =  0 0 5t .=  fin 0 6t .= . (22) 

All other parameters can vary in concrete cases. It means that we are going to repro-

duce the following reference solution: 
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( ) ( )
( )( )

( )
( )

2

2

2

2

3 3
2 22

1 3 2 2 31
,
2 42 2

2

, e
2

m
x m

t

m

m m m

mm

x
m

x t t
C x t t f M

xt m



 



− +
− + 

 
 

−−− −

+ − − −

−−

  
−  

    = =       −
  
 

. (23) 

MATLAB software has been used to do all numerical calculations, where the Kum-

mer M function (confluent hypergeometric function of the first kind) has been calculated 

via the command hypergeom. We note that calculating the two values of the boundary 

conditions for a given time point is four orders of magnitude slower than performing the 

numerical steps for all the 199 nodes of the grid. 

All the eigenvalues of the system matrix M are negative. The stiffness ratio of the 

problem can be defined as MAX MIN/  , where ( )MIN MAX   are the smallest (largest) ab-

solute value eigenvalues of M. However, there are threshold time step sizes 
FTCS
MAX MAX 2 /h =   and RK4

MAX MAX 2.8 /h   (frequently called CFL limits), above which 

the solutions by FTCS (explicit Euler) and RK4 schemes, respectively, are expected to blow 

up [54]. 

4.2. Spatially Uniform Grid, γ = 0 

Experiment 1: We use an equidistant grid with 0 01x . = ,  0 1 2 09x . , . , and we set 

m = 3.6. For this problem, S 6FTC
MAX 3.9 10h −=   and the stiffness ratio is 62.6 10 . In Figure 4, 

the errors as a function of the time step size are shown in a log–log diagram. Because we 

use a fixed space step size and decrease only the time step size, the errors cannot go to 

zero, but only to the residual error due to space discretization, which can be seen in the 

bottom left of the figure. 

 

Figure 4. Errors as a function of the effective time step size heff for Experiment 1. The errors are 

defined in (20), and heff is defined in (21). The slopes of the error curves give the order of convergence 

of the methods. 
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We calculated the numerical order of convergence using two values of the errors be-

longing to two subsequent time step sizes using the formula 

( )
( )

( )

1

2

1 2

p

Error h
log

Error h
Error h p

log h / h
 = . 

 

In Table 1, we present numerical order for one pair of neighboring error quantities 

(one section of the curves in Figure 4) with the values of the errors for each method. 

Table 1. Errors and numerical order of different algorithms for Experiment 1. 

Numerical Method ( )LError   Numerical Order 

CNe, 68.12 10h −=   23.03 10−  
1.00 

CNe, 64.07 10h −=   21.52 10−  

CpC, 68.12 10h −=   35.2 10−  
1.77 

CpC, 64.07 10h −=   31.5 10−  

LNe, 68.12 10h −=   36.0 10−  
1.75 

LNe, 64.07 10h −=   31.8 10−  

LNe3, 68.12 10h −=   31.7 10−  
2.42 

LNe3, 64.07 10h −=   43.2 10−  

CLL, 68.12 10h −=   49.1 10−  
2.53 

CLL, 64.07 10h −=   41.6 10−  

LH-CNe, 68.12 10h −=   33.0 10−  
1.98 

LH-CNe, 64.07 10h −=   47.6 10−  

PI, 68.12 10h −=   35.0 10−  
1.65 

PI, 64.07 10h −=   41.6 10−  

LH, 0.0021h =  24.7 10−  
2.62 

LH, 0.0010h =  37.6 10−  

OOEH, 0.0021h =  1.36 
2.33 

OOEH, 0.0010h =  0.27 

RH, 0.0021h =  1.38 
2.22 

RH, 0.0010h =  0.30 

SH, 0.0021h =  0.30 
2.28 

SH, 0.0010h =  26.1 10−  

ASH, 0.0021h =  0.30 
2.28 

ASH, 0.0010h =  26.1 10−  

DF, 0.0021h =  0.14 
1.67 

DF, 0.0010h =  24.5 10−  

We also plotted the initial and final concentrations for the CLL and LH methods with 

different time step size in Figure 5, where the errors are approximately the same, namely 

0.0483 for the CLL method ( 56 5 10h . −=  ) and 0.0465 for the LH method (h = 0.0021). In 

Figure 6, the ( )u x,t  functions are presented in the form of 3D surfaces for the analytical 

and one numerical solution. One can see that the two surfaces are indistinguishable by the 

naked eye. Finally, in Figure 7, we present the function analytic num( , ) ( , )u t x u t x− , i.e., the 

difference between the analytical solution and the LH method for h = 0.0021 as a function 

of space and time in a 3D plot to help the readers to visualize how the error is developing 

in time. 



Mathematics 2022, 10, 2813 16 of 28 
 

 

Experiment 2: In this example, we shift the space interval to  4 5 99x , . , while we 

keep the values of Equation (22) and those of the previous experiment: 0 01x . = , m = 3.6. 

For this problem, S 8FTC
MAX 8.3 10h −=  , and the stiffness ratio is 71.2 10 . From Figure 8, one 

can see that now the errors start to significantly decrease (with decreasing h) only below 
310h −=  instead of 210h −=  as in Figure 4. In contrast, the errors finally tend to much 

smaller values for the best methods. However, the RK4 method is practically useless, as it 

is unstable even for 75 10h −=   and therefore it is missing from the figure. The errors of 

some methods and the appropriate numerical orders are tabulated in Table 2. In Figure 9, 

we plotted the functions u for the LH and the DF method with a different time step size, 

where the errors are approximately the same, namely 47.0 10−  for the LH method (
45 2 10h . −=  ), and 47.2 10−  for the DF method ( 42 6 10h . −=  ). In Figure 10, we present the 

difference between the analytical solution and the LH method for 45 2 10h . −=   as a func-

tion of space and time in a 3D plot to help the readers to visualize how the error is devel-

oping in time. 

 

Figure 5. The concentration u as a function of the x variable in the case of the initial function u0, the 

analytical solution at fint , the CLL method for 56 5 10h . −=  , and the leapfrog-hopscotch (LH) 

method for h = 0.0021 for Experiment 1. We emphasize that the conventional Runge–Kutta methods 

are unstable for these time step sizes. 
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Figure 6. The concentration u as a function of x and t in the case of Experiment 1. Left side: the 

analytical solution. Right side: LH method for h = 0.0021. 

 

Figure 7. The difference between the analytical solution and the LH method for h = 0.0021 as a func-

tion of space and time for Experiment 1. 

Table 2. Errors and numerical order of different algorithms for Experiment 2. 

Numerical Method ( )LError   Numerical Order 

CNe, 64.1 10h −=   34.9 10−  
1.14 

CNe, 62.0 10h −=   32.2 10−  
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LNe, 64.1 10h −=   32.3 10−  
1.18 

LNe, 62.0 10h −=   31.0 10−  

CLL, 64.1 10h −=   31.0 10−  
1.22 

CLL, 62.0 10h −=   44.3 10−  

LH, 41.3 10h −=   53.3 10−  
2.49 

LH, 56.5 10h −=   65.8 10−  

OOEH, 41.3 10h −=   37.1 10−  
2.00 

OOEH, 56.5 10h −=   31.8 10−  

DF, 41.3 10h −=   43.5 10−  
3.39 

DF, 56.5 10h −=   53.3 10−  

 

Figure 8. The L  errors as a function of the time step size h for an equidistant mesh for large x 

(Experiment 2). RK4 is not present in the figure because it is unstable for the examined time step 

sizes, as the CFL limit for the standard RK4 method is approximately 71.2 10h −  . 
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Figure 9. The concentration u as a function of the x variable in the case of the initial function u0, the 

analytical solution at fint , the LH method for 45 2 10h . −=  , and the DF method for 42 6 10h . −=   

in the case of Experiment 2. The LH and the DF curves almost coincide. 

 

Figure 10. The function analytic num( , ) ( , )u t x u t x− , i.e., the difference between the analytical solu-

tion and the LH method for 45 2 10h . −=   as a function of space and time for Experiment 2. 
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Experiment 3: Here we fix the time step size to 45 10h −=   and vary the parameter m. 

The following parameters have been set as 0 015x . = ,  4 5 99x , . , and of course, we 

keep the values given in Equation (22). The errors are plotted in Figure 11. For simplicity, 

we disregard the usage of effective time step sizes for the SH and ASH methods, and, due 

to that, their curves are very close to each other. One can see that the good performance 

of the LH and the DF methods is not an accident but a general trend. The RK4 method is 

completely missing from the figure as it never provided any meaningful value for this 

time step size. 

 

Figure 11. The L  errors as a function of the parameter m for an equidistant mesh (Experiment 3). 

RK4 is not present in the figure because it is unstable for the examined time step size. 

4.3. Spatially Non-Equidistant Grid 

Experiment 4: Now we set 0 003. = − , m = 3.6, 0 0 1x .= , and 0 0 012x . = , thus the 

last cell length is 0 0048Nx . =  and its center is at 1 7692NX .= . For this problem, 

S 6FTC
MAX 1.7 10h −=  , and the stiffness ratio is 65.8 10 . In Figure 12, one can see that the error-

functions are very similar to those in Figure 4, which means that the methods work well 

for the non-equidistant case as well. Some errors and the calculated numerical orders are 

presented in Table 3. In Figure 13, the deviations of the numerical solution from the ana-

lytical one is shown as a function of space and time. 

Table 3. Errors and numerical order of different algorithms for Experiment 3. 

Numerical Method ( )LError   Numerical Order 

CNe, 68.1 10h −=   24.1 10−  
1.03 

CNe, 64.1 10h −=   22.0 10−  

LNe, 68.1 10h −=   21.1 10−  1.66 
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LNe, 64.1 10h −=   33.4 10−  

CLL, 68.1 10h −=   32.4 10−  
2.24 

CLL, 64.1 10h −=   45.1 10−  

LH, 32.1 10h −=   27.2 10−  
3.00 

LH, 31.0 10h −=   39.0 10−  

OOEH, 32.1 10h −=   4.45 
1.90 

OOEH, 31.0 10h −=   1.19 

DF, 32.1 10h −=   0.18 
1.31 

DF, 31.0 10h −=   27.2 10−  

 

Figure 12. The L  errors as a function of the time step size h for a decreasing mesh (Experiment 

4). 
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Figure 13. The difference between the analytical solution and the LH method for 32 1 10h . −=   as a 

function of space and time for Experiment 4. 

Experiment 5: Now we set 0 04. =  to obtain a mesh where the length of the cells is 

rapidly increasing with x. We choose m = 7.2, 0 0 3x .= , and 0 0 004x . = , thus the last cell 

length is 0 0358Nx . = , and its center is at 4 262NX .= . For this problem, S 8FTC
MAX 2.3 10h −= 

, and the stiffness ratio is 89.1 10 . 

In Figure 14, the error functions are presented. The errors of six numerical schemes 

and the numerical orders are presented in Table 4. One can see that even the least accurate 

CNe method beats the RK4 scheme, as CNe reaches the minimum error at about 63 10h −= 

, whereas RK4 can be stable only below 83.2 10h −  , at an almost two orders of magnitude 

smaller time step size. We are going to examine the reason for this. 
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Figure 14. The L  errors as a function of the time step size h for a decreasing mesh (Experiment 

5). RK4 is not present in the figure because it is unstable for the examined time step sizes, as it is 

stable only below 83.2 10h −  . 

Table 4. Errors and numerical order of different algorithms for Experiment 5. 

Numerical Method ( )LError   Numerical Order 

CNe, 42.6 10h −=   23.7 10−  
0.87 

CNe, 41.3 10h −=   22.0 10−  

LNe, 42.6 10h −=   21.3 10−  
1.31 

LNe, 41.3 10h −=   35.0 10−  

CLL, 42.6 10h −=   34.4 10−  
1.56 

CLL, 41.3 10h −=   31.5 10−  

LH, 21.7 10h −=   28.3 10−  
1.81 

LH, 38.3 10h −=   32.4 10−  

SH, 32.1 10h −=   23.6 10−  
3.08 

SH, 31.0 10h −=   34.2 10−  

DF, 38.3 10h −=   27.9 10−  
2.10 

DF, 34.2 10h −=   21.8 10−  

In Figure 15, we plot the functions u for the CNe and the SH method with a different 

time step size, where the errors are comparable, namely, 0.02 for the CNe method (
41 3 10h . −=  ), and 0.036 for the SH method ( 0 0021h .= ). 
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We can see that there are two completely different types of difficulties in this prob-

lem. As one can see on the left-hand side of Figure 11, the function u is changing rapidly 

for small values of x. For x < 1, the quickly converging methods, such as the OOEH, LH, 

SH, ASH, and OOEH, approximate the true solution quite well, whereas other methods, 

especially the CNe, lag behind. The other difficulty can be understood if one calculates the 

resistances: they are decreasing from 1 2 22 3,R .=  to 
6

198 199 1 2 10,R . −=  , thus the right 

side of the problem yields extremely large (negative) eigenvalues. The tiny CFL limit for 

the conditionally stable RK methods is caused by this right side, where actually nothing 

interesting happens from the physical point of view, as the function is very flat and 

changes almost nothing. This is a fatal weakness of the conventional RK methods and 

causes trouble, albeit to a much smaller extent, to the SH and other otherwise rapidly con-

verging schemes. In the case of the RK and those hopscotch-type methods that are not 

unconditionally positive, unphysical oscillations appear, but in the unconditionally stable 

cases, these oscillations are damped and never grow unbounded. This damping is very 

effective for the LH method, and that is why it is more accurate than the positivity pre-

serving CpC and LNe3 methods, even for large time step sizes. For the OOEH, RH, SH, 

and ASH schemes, this damping is not very effective for large time step sizes; it is only 

enough to keep them stable, that is why their error is rather large on the right-hand side 

of Figures 4, 8, 12, and 14. Another difference is that the LH method produces the largest 

oscillations on the left side, where the true function is changing rapidly, whereas the RH, 

SH, and ASH methods do it at the right side. To illustrate this, in Figure 16, we have plot-

ted the difference 
analytic fin num fin( ) ( )i iu t u t−  cell by cell as a function of the x variable for 

four different methods. The time- development of the error is presented in Figure 17 for 

the CLL method. 

 

Figure 15. The concentration u as a function of the x variable in the case of the initial function u0, the 

analytical solution at fint , the CNe method for 41 3 10h . −=  , and the SH method for 32 1 10h . −= 

. The SH curve almost coincides with the exact one for small values of x, whereas this is true for the 

CNe curve for large x. The CFL limit for the standard RK4 method is approximately 83.2 10h −  . 
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Figure 16. The errors of the cell concentrations as a function of the x variable in the case of the CLL 

and the SH method for 310h −= , and the LH and DF method 34 2 10h . −=  . 

 

Figure 17. The difference between the analytical solution and the CLL method for 31 0 10h . −=   as 

a function of space and time for Experiment 5. 
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5. Discussion and Summary 

We have constructed a set of novel analytical solutions for the non-steady-state linear 

diffusion equation using a similarity transformation for the case when the diffusion coef-

ficient depends on the space coordinate. The solution is a linear combination of the Whit-

taker functions, thus it is highly nontrivial. 

We have reproduced the new analytical solution by 14 numerical methods, one of 

which is the most standard fourth order Runge–Kutta method, and the rest are explicit 

and unconditionally stable schemes, most of them recently invented. First, we have used 

a spatially uniform (equidistant) mesh, then a non-uniform one, where x changed 

smoothly. We observed that usually the leapfrog-hopscotch method has the best perfor-

mance and the Dufort–Frankel has the second best. However, if unconditional positivity 

is essential, the LNe3 method can be used. Nevertheless, all of the unconditionally stable 

explicit methods give accurate results for orders-of-magnitude larger time step size than 

the standard explicit methods. Therefore, we encourage scholars who still use the explicit 

RK method for the simulation of linear diffusion or heat conduction problems to switch 

to an unconditionally stable explicit method. If the diffusion is nonlinear or contains extra 

terms (convection or reaction), more investigation of these schemes is still necessary. That 

is why we consider this study as a precursor of subsequent investigations in which we 

analyze concentration dependent (nonlinear) diffusion equations as well as reaction–dif-

fusion equations of different types, e.g., the FitzHugh–Nagumo [56], the Allen [57], and 

the Burgers–Huxley equation [58]. Reaction–diffusion equations come into play in numer-

ous scientific fields, such as mathematical biology [59], plasma physics, or even social sci-

ences. We are going to use the Ansatz to obtain new analytical solutions, then adapt some 

of the most efficient methods (especially the LH) to these cases. We note that a few of our 

methods have already been applied to Fisher’s equation with good results, so we believe 

in the successful continuation. 
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